An Intelligent Approach for Constructing Domain Ontology Using Art2 Neural Network and C-Value Method
نویسندگان
چکیده
Research on semantic webs has become increasingly widespread in the computer science community. The core technology of a semantic web is an artefact called an ontology. The major problem in constructing an ontology is the long period of time required. Another problem is the large number of possible meanings for the knowledge in the ontology. To overcome these problems, one approach is developing ontology learning methods and automating ontology construction process. In this article a novel automated method for ontology learning is proposed. First, domain-related documents were collected. Secondly, the C-value method was implemented for extracting meaningful terms from documents. Then, an ART neural network was used to cluster documents, and terms' weight was calculated by TF–IDF method in order to find candidate keyword for each cluster. Next, the Bayesian network and lexico-syntactic patterns were applied to construct the initial ontology. Finally, the proposed ontology was evaluated by expert's views. The primary results show that the proposed ontology learning method has higher precision than similar studies. Key-Words: Ontology; ART Neural Network; Term Frequency–Inverse Document Frequency (TF-IDF); C-value Method; Bayesian network; Lexico-Syntactic Patterns.
منابع مشابه
طراحی سامانه هوشمند ساخت هستان نگار به کمک شبکه عصبی ARTو روشC-value
In recent years, many efforts have been done to design ontology learning methods and automate ontology construction process. The ontology construction process is a time-consuming and costly procedure for almost all domains/applications, so automating this process is a solution to overcome the knowledge acquisition bottleneck in information systems and reduce the construction cost. In this artic...
متن کاملA Novel Intelligent Fault Diagnosis Approach for Critical Rotating Machinery in the Time-frequency Domain
The rotating machinery is a common class of machinery in the industry. The root cause of faults in the rotating machinery is often faulty rolling element bearings. This paper presents a novel technique using artificial neural network learning for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (harmmean and median), whic...
متن کاملA Neural Network Method Based on Mittag-Leffler Function for Solving a Class of Fractional Optimal Control Problems
In this paper, a computational intelligence method is used for the solution of fractional optimal control problems (FOCP)'s with equality and inequality constraints. According to the Ponteryagin minimum principle (PMP) for FOCP with fractional derivative in the Riemann- Liouville sense and by constructing a suitable error function, we define an unconstrained minimization problem. In the optimiz...
متن کاملAn Unsupervised Learning Method for an Attacker Agent in Robot Soccer Competitions Based on the Kohonen Neural Network
RoboCup competition as a great test-bed, has turned to a worldwide popular domains in recent years. The main object of such competitions is to deal with complex behavior of systems whichconsist of multiple autonomous agents. The rich experience of human soccer player can be used as a valuable reference for a robot soccer player. However, because of the differences between real and simulated soc...
متن کاملA Comparative Study of the Neural Network, Fuzzy Logic, and Nero-fuzzy Systems in Seismic Reservoir Characterization: An Example from Arab (Surmeh) Reservoir as an Iranian Gas Field, Persian Gulf Basin
Intelligent reservoir characterization using seismic attributes and hydraulic flow units has a vital role in the description of oil and gas traps. The predicted model allows an accurate understanding of the reservoir quality, especially at the un-cored well location. This study was conducted in two major steps. In the first step, the survey compared different intelligent techniques to discover ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011